ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 201]      



Задача 86499

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
[ Неопределено ]
Сложность: 3-
Классы: 8,9,10

Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

Прислать комментарий     Решение

Задача 97954

Темы:   [ Средние величины ]
[ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Фомин С.В.

Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля?

Прислать комментарий     Решение

Задача 116854

Темы:   [ Шахматная раскраска ]
[ Системы линейных уравнений ]
Сложность: 3-
Классы: 8,9

Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?

Прислать комментарий     Решение

Задача 35379

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 9,10

Найдите все функции  f(x), определённые при всех действительных x и удовлетворяющие уравнению  2f(x) + f(1 – x) = x².

Прислать комментарий     Решение

Задача 35793

Темы:   [ Тетраэдр (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 8,9,10

Дан тетраэдр, у которого периметры всех граней равны между собой. Докажите, что сами грани равны между собой.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .