ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 207]      



Задача 35586

Темы:   [ Системы точек и отрезков (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10

На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.

Прислать комментарий     Решение

Задача 52579

Темы:   [ Касающиеся окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Через точку касания двух окружностей проведена секущая. Докажите, что радиусы и касательные, проведённые через концы образовавшихся хорд, параллельны.

Прислать комментарий     Решение

Задача 53549

Темы:   [ Средняя линия трапеции ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Дана трапеция ABCD с основанием AD. Биссектрисы внешних углов при вершинах A и B пересекаются в точке P, а при вершинах C и D – в точке Q. Докажите, что длина отрезка PQ равна полупериметру трапеции.

Прислать комментарий     Решение

Задача 53556

Темы:   [ Средняя линия трапеции ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Докажите, что биссектрисы углов при боковой стороне трапеции пересекаются на средней линии.

Прислать комментарий     Решение

Задача 53778

Темы:   [ Признаки подобия ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD пересекаются в точке O. Докажите, что  AO·BO = CO·DO  тогда и только тогда, когда  BC || AD.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .