ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 292]      



Задача 66810

Тема:   [ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 9,10,11

Автор: Ивлев Ф.

Пусть $A_1$, $B_1$, $C_1$ – середины сторон $BC$, $AC$ и $AB$ треугольника $ABC$, $K$ – основание высоты, проведенной из вершины $A$, а $L$ – точка касания вписанной окружности $\gamma$ со стороной $BC$. Описанные окружности треугольников $LKB_1$ и $A_1LC_1$ вторично пересекают прямую $B_1C_1$ в точках $X$ и $Y$ соответственно. Окружность $\gamma$ пересекает эту прямую в точках $Z$ и $T$. Докажите, что $XZ = YT$.
Прислать комментарий     Решение


Задача 52650

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В прямоугольную трапецию вписана окружность радиуса R. Найдите стороны трапеции, если её меньшее основание равно $ {\frac{4}{3}}$R.

Прислать комментарий     Решение


Задача 52651

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Центр окружности, вписанной в прямоугольную трапецию, удалён от концов её боковой стороны на расстояния 15 и 20. Найдите стороны трапеции.

Прислать комментарий     Решение


Задача 52673

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Основания трапеции равны 4 и 16. Найдите радиусы окружностей, вписанной в трапецию и описанной около неё, если известно, что эти окружности существуют.

Прислать комментарий     Решение


Задача 52739

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В прямоугольной трапеции лежат две окружности. Одна из них, радиуса 4, вписана в трапецию, а вторая, радиуса 1, касается двух сторон трапеции и первой окружности. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .