ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 144]      



Задача 98397

Темы:   [ Четырехугольники (прочее) ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Внутренняя точка M выпуклого четырёхугольника ABCD такова, что треугольники AMB и CMD – равнобедренные с углом величиной 120° при вершине M.
Докажите существование такой точки N, что треугольники BNC и DNA – правильные.

Прислать комментарий     Решение

Задача 108069

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Треугольник ABC вписан в окружность с центром O. Прямые AC и BC вторично пересекают окружность, проходящую через точки A, O и B, в точках E и K. Докажите, что прямые OC и EK перпендикулярны.

Прислать комментарий     Решение

Задача 53343

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL – правильный.

Прислать комментарий     Решение

Задача 56507

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах выпуклого четырёхугольника ABCD внешним образом построены подобные ромбы, причём их острые углы α прилегают к вершинам A и C. Докажите, что отрезки, соединяющие центры противоположных ромбов, равны, а угол между ними равен α.

Прислать комментарий     Решение

Задача 57957

Темы:   [ Композиции поворотов ]
[ Признаки и свойства параллелограмма ]
[ Поворот помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .