ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 192]      



Задача 53388

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

Прислать комментарий     Решение

Задача 76421

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Арифметическая прогрессия ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3-
Классы: 8,9

Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен $ {\frac{1}{3}}$ одной из высот.
Прислать комментарий     Решение


Задача 30406

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Средние величины ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8,9

Докажите, что сумма n последовательных нечётных натуральных чисел при  n > 1  является составным числом.

Прислать комментарий     Решение

Задача 61044

Темы:   [ Теорема Виета ]
[ Кубические многочлены ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9,10

При каких a и b уравнение  x3 + ax + b = 0  имеет три различных решения, составляющих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 76433

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9,10

Сколькими различными способами можно разложить натуральное число n на сумму трёх натуральных слагаемых? Два разложения, отличающиеся порядком слагаемых, считаются различными.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 192]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .