|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи У 10 детей есть несколько мешков с конфетами. Дети начинают делить конфеты между собой. Каждый по очереди забирает из каждого мешка свою долю и уходит. Доля вычисляется так: делим текущее число конфет в каждом мешке на число оставшихся детей (включая себя), если нацело не поделилось — округляем до целого в меньшую сторону. Может ли всем достаться разное количество конфет, а) если мешков всего 8; б) если мешков всего 9? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 175]
Окружность разделена в отношении 5:9:10 и через точки деления проведены касательные. Найдите наибольший угол в полученном треугольнике.
В прямой угол вписана окружность. Хорда, соединяющая точки касания, равна 2. Найдите расстояние от центра окружности до этой хорды.
Внутри данной окружности находится другая окружность; ABC и ADE — хорды большей окружности, касающиеся меньшей окружности в точках B и D; BMD — меньшая из двух дуг между точками касания; CNE — дуга между концами хорд. Найдите угловую величину дуги CNE, если дуга BMD содержит 130o.
Угол с вершиной C равен 120o. Окружность радиуса R касается сторон угла в точках A и B. Найдите AB.
Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 175] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|