Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На шахматной доске стоит фишка. Двое по очереди передвигают фишку на соседнюю по стороне клетку. При этом запрещается ставить фишку на поле, где она уже побывала. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Вниз   Решение


Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 105]      



Задача 116245

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 9,10,11

Существуют ли такие натуральные числа a, b, c, d, что  a³ + b³ + c³ + d³ = 100100 ?

Прислать комментарий     Решение

Задача 116584

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9,10

Числа a и b таковы, что   a³ – b³ = 2,  a5b5 ≥ 4.   Докажите, что  a² + b² ≥ 2.

Прислать комментарий     Решение

Задача 35276

Темы:   [ Уравнения в целых числах ]
[ Тождественные преобразования ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что число 2n для некоторого натурального n является суммой двух точных квадратов.
Докажите, что n также является суммой двух точных квадратов.

Прислать комментарий     Решение

Задача 60504

Темы:   [ Алгоритм Евклида ]
[ Тождественные преобразования ]
[ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

При каких целых $n$ число
  а) $\frac{n^4+3}{n^2+n+1}$;   б) $\frac{n^3+n+1}{n^2-n+1}$   также будет целым?

Прислать комментарий     Решение

Задача 60943

Темы:   [ Исследование квадратного трехчлена ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

Докажите, что корни уравнения
  а)  (x – a)(x – b) + (x – b)(x – c) + (x – a)(x – c) = 0;
  б)  c(x – a)(x – b) + a(x – b)(x – c) + b(x – a)(x – c) = 0
всегда вещественные.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .