ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На шахматной доске стоит фишка. Двое по очереди передвигают фишку на соседнюю по стороне клетку. При этом запрещается ставить фишку на поле, где она уже побывала. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.
|
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 105]
Существуют ли такие натуральные числа a, b, c, d, что a³ + b³ + c³ + d³ = 100100 ?
Числа a и b таковы, что a³ – b³ = 2, a5 – b5 ≥ 4. Докажите, что a² + b² ≥ 2.
Известно, что число 2n для некоторого натурального n является суммой двух точных квадратов.
При каких целых $n$ число
Докажите, что корни уравнения
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 105]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке