ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи A – вершина правильного звёздчатого пятиугольника. Ломаная AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE продолжены до пересечения в точке F. Докажите, что многоугольник ABB'CC'DED' равновелик четырёхугольнику AD'EF. |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 965]
Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а.
При каком натуральном K величина
a, b и c – целые числа. Докажите, что если a = b + c, то a4 + b4 + c4 есть удвоенный квадрат целого числа.
В лес за грибами пошли 11 девочек и n мальчиков. Вместе они собрали n² + 9n – 2 гриба, причём все они собрали поровну грибов.
Пусть a, b, c, d – такие вещественные числа, что
a³ + b³ + c³ + d³ = a + b + c + d = 0.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 965]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке