|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны треугольник ABC с тупым углом при вершине A и ромб CDEF, все вершины которого лежат на сторонах треугольника ABC. |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 565]
Дан вписанный 2n-угольник с углами
Даны прямая l и точки A и B по одну сторону от нее. Пусть A1 и B1 — проекции этих точек на прямую l. С помощью циркуля и линейки постройте на прямой l такую точку M, чтобы угол AMA1 был вдвое меньше угла BMB1.
На плоскости даны прямые l1, l2, ..., l2n, пересекающиеся в одной точке. Блоха сидит в некоторой точке M плоскости и прыгает через прямую l1, попадая в точку M1, причём M и M1 симметричны относительно прямой l1, далее — через прямую l2 и т.д. Докажите, что если через 2n прыжков блоха оказалась в точке М, то, начиная движение из любой точки плоскости, через 2n прыжков блоха окажется на прежнем месте.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 565] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|