Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 292]
В трапецию ABCD (BC || AD) вписана окружность,
касающаяся боковых сторон AB и CD в точках K и L
соответственно, а оснований AD и BC в точках M и N.
а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что KQ || AD.
б) Докажите, что AK·KB = CL·LD.
|
|
Сложность: 3+ Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AD и BC параллельны.
Докажите, что если биссектрисы углов DAC, DBC, ACB и ADB образовали ромб, то AB = CD.
|
|
Сложность: 3+ Классы: 10,11
|
В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла?
В трапеции ABCD BC < AD, AB = CD, K – середина AD, M – середина CD, CH – высота.
Докажите, что прямые AM, CK и BH пересекаются в одной точке.
Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 292]