ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 56540

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2-
Классы: 7,8

Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.
Прислать комментарий     Решение


Задача 56633

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2
Классы: 8,9

В треугольнике ABC проведена высота AHO — центр описанной окружности. Докажите, что  $ \angle$OAH = |$ \angle$B - $ \angle$C|.
Прислать комментарий     Решение


Задача 56538

Темы:   [ Вписанный угол (прочее) ]
[ Правильные многоугольники ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2+
Классы: 8,9

Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

Прислать комментарий     Решение

Задача 56539

Темы:   [ Вписанный угол (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 7,8,9

Центр вписанной окружности треугольника ABC симметричен центру описанной окружности относительно стороны AB. Найдите углы треугольника ABC.
Прислать комментарий     Решение


Задача 56634

Тема:   [ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

Пусть H — точка пересечения высот треугольника ABC, а AA' — диаметр его описанной окружности. Докажите, что отрезок A'H делит сторону BC пополам.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .