Страница: << 1 2 3 4 >> [Всего задач: 17]
Окружности S1 и S2 пересекаются в точках A и B,
причем касательные к S1 в этих точках являются радиусами S2. На
внутренней дуге S1 взята точка C и соединена с точками A и B
прямыми. Докажите, что вторые точки пересечения этих прямых с S2
являются концами одного диаметра.
Из центра O окружности опущен перпендикуляр OA
на прямую l. На прямой l взяты точки B и C так, что AB = AC.
Через точки B и C проведены две секущие, первая из которых
пересекает окружность в точках P и Q, а вторая — в точках M
и N. Прямые PM и QN пересекают прямую l в точках R и S.
Докажите, что AR = AS.
Пусть H - точка пересечения высот в треугольнике ABC.
Докажите, что если провести прямые, симметричные прямым AH, BH, CH
относительно биссектрис углов A, B, C, то эти прямые пересекутся в
центре O описанной окружности треугольника ABC.
|
|
Сложность: 3+ Классы: 9,10
|
В окружность вписан треугольник ABC. Точка P пробегает дугу ACB.
Найдите геометрическое место центров вписанных окружностей
всевозможных треугольников ABP.
|
|
Сложность: 3 Классы: 8,9,10
|
Треугольник BHC, где H – ортоцентр треугольника ABC, достроен до параллелограмма BHCD. Докажите, что ∠BAD = ∠CAH.
Страница: << 1 2 3 4 >> [Всего задач: 17]