Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 277]
|
|
|
Сложность: 4+ Классы: 9,10,11
|
a и b – такие различные натуральные числа, что
ab(a + b) делится на a² + ab + b². Докажите, что |a – b| >
.
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Существуют ли три взаимно простых в совокупности натуральных числа, квадрат каждого из которых делится на сумму двух оставшихся?
|
|
|
Сложность: 4+ Классы: 7,8,9
|
Рациональные числа x, y и z таковы, что все числа x + y² + z², x² + y + z² и x² + y² + z целые. Докажите, что число 2x целое.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана таблица n×n клеток и такие натуральные числа k и m > k, что m и n – k взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа a1, ..., ak, ak+1, ..., am, am+1, ..., an. Тогда в следующей строчке записываются те же числа, но в таком порядке: am+1, ..., an, ak+1, ..., am, a1, ..., ak. В первую строчку записываются (по порядку) числа 1, 2, ..., n. Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.
|
|
|
Сложность: 5- Классы: 9,10,11
|
В ячейку памяти компьютера записали число 6. Далее компьютер делает миллион шагов. На шаге номер n он увеличивает число в ячейке на наибольший общий делитель этого числа и n. Докажите, что на каждом шаге компьютер увеличивает число в ячейке либо на 1, либо на простое число.
Страница:
<< 40 41 42 43
44 45 46 >> [Всего задач: 277]