Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через одну из точек пересечения двух равных окружностей проведена общая секущая. Докажите, что отрезок этой секущей, заключённый между окружностями, делится пополам окружностью, построенной на общей хорде этих окружностей как на диаметре.

   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 540]      



Задача 110437

Темы:   [ Правильная пирамида ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Дана правильная треугольная пирамида SABC . Точка S – вершина пирамиды, AB = 1 , AS = 2 , BM – медиана треугольника ABC , AD – биссектриса треугольника SAB . Найдите длину отрезка DM .
Прислать комментарий     Решение


Задача 110438

Темы:   [ Правильная пирамида ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Дана правильная треугольная пирамида SABC . Точка S – вершина пирамиды, SA = 2 , BC = 3 , BM – медиана основания пирамиды, AR – высота треугольника ASB . Найдите длину отрезка MR .
Прислать комментарий     Решение


Задача 110488

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD , каждое ребро которой равно 2, построено сечение плоскостью, параллельной диагонали основания AC и боковому ребру SB пирамиды и пересекающей ребро AB . Найдите периметр многоугольника, полученного в этом сечении, если нижнее основание сечения равно .
Прислать комментарий     Решение


Задача 110489

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD , каждое ребро которой равно b , построено сечение плоскостью, параллельной диагонали основания BD и боковому ребру SA и пересекающей ребро AB пирамиды. Периметр многоугольника, полученного в этом сечении, равен 2(2++) . Найдите численное значение b , если нижнее основание сечения равно .
Прислать комментарий     Решение


Задача 111097

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Угол бокового ребра с плоскостью основания правильной треугольной пирамиды равен α . Найдите угол боковой грани с плоскостью основания.
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .