ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1007]      



Задача 30825

Темы:   [ Ориентированные графы ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

В некоторой стране каждый город соединён с каждым дорогой с односторонним движением.
Докажите, что найдётся город, из которого можно добраться в любой другой.

Прислать комментарий     Решение

Задача 30828

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 6,7

20 команд сыграли круговой турнир по волейболу.
Докажите, что команды можно занумеровать числами от 1 до 20 так, что 1-я команда выиграла у 2-й, 2-я – у 3-й, ..., 19-я – у 20-й.

Прислать комментарий     Решение

Задача 31099

Тема:   [ Деревья ]
Сложность: 4-
Классы: 6,7,8

Есть волейбольная сетка 5×10. Какое максимальное число веревок, её составляющих, можно разрезать так, чтобы она не распалась?

Прислать комментарий     Решение

Задача 60425

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите равенства (см. треугольник Лейбница, задача 60424):

  а) 1 = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + ... ;

  б) 1/2 = 1/3 + 1/12 + 1/30 + 1/60 + 1/105 + ... ;

  в) 1/3 = 1/4 + 1/20 + 1/60 + 1/140 + 1/280 + ... .

Прислать комментарий     Решение

Задача 60426

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 10,11

Найдите сумму (см. задачу 60424 про треугольник Лейбница):
  1/12 + 1/30 + 1/60 + 1/105 + ...
и обобщите полученный результат.

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .