Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1023]
Докажите, что граф, имеющий пять вершин, каждая из которых соединена ребром со всеми остальными, не является плоским.
Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?
Докажите, что граф, имеющий 10 вершин, степень каждой из которых равна 5, – не плоский.
Можно ли составить решётку, изображённую на рисунке
а) из пяти ломаных длины 8?
б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)
|
|
|
Сложность: 4- Классы: 8,9,10
|
Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1023]