Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 109]
Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.
|
|
Сложность: 4- Классы: 8,9,10
|
В угол вписаны непересекающиеся окружности ω1 и ω2. Рассмотрим все такие пары параллельных прямых l1 и l2, что l1 касается ω1, l2 касается ω2 (ω1, ω2 находятся между l1 и l2). Докажите, что средние линии всех трапеций, образованных прямыми l1, l2 и сторонами данного угла, касаются фиксированной окружности.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть a и b – натуральные взаимно простые числа. Рассмотрим точки плоскости с целыми координатами (x, y), лежащие в полосе 0 ≤ x ≤ b – 1. Каждой такой точке припишем целое число N(x, y) = ax + by.
а) Докажите, что для каждого натурального c существует ровно одна точка (x, y) (0 ≤ x ≤ b – 1), для которой N(x, y) = c.
б) Теорема Сильвестра. Докажите, что наибольшее c, для которого уравнение ax + by = c не имеет решений в целых неотрицательных числах, имеет вид
c = ab – a – b.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На сторонах угла взяты точки A, B. Через середину M отрезка AB проведены две прямые, одна из которых пересекает стороны угла в точках A1, B1, другая – в точках A2 , B2. Прямые A1B2 и A2B1 пересекают AB в точках P и Q. Докажите, что M – середина PQ.
|
|
Сложность: 4+ Классы: 8,9,10
|
С помощью циркуля и линейки постройте пятиугольник по
серединам его сторон.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 109]