ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 210]      



Задача 110035

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Тригонометрические неравенства ]
[ Неравенства с модулями ]
Сложность: 4+
Классы: 10,11

Автор: Знак Е.

Существует ли функция f(x) , определенная при всех x и для всех x,y удовлетворяющая неравенству

|f(x+y)+ sin x+ sin y|<2?

Прислать комментарий     Решение

Задача 61235

Темы:   [ Числа Фибоначчи ]
[ Обратные тригонометрические функции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4+
Классы: 10,11

Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению

arcctg F2n - arcctg F2n + 2 = arcctg F2n + 1. (8.2)

Получите отсюда равенство

arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...= $\displaystyle {\dfrac{\pi}{4}}$.


Прислать комментарий     Решение

Задача 79402

Темы:   [ Предел последовательности, сходимость ]
[ Тригонометрические неравенства ]
Сложность: 4+
Классы: 10,11

Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности.
Прислать комментарий     Решение


Задача 61146

 [Ряд обратных квадратов]
Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5
Классы: 10,11

а) Докажите, что при нечётном  n > 1  справедливо равенство:   = θ   (0 < θ < 1).
б) Докажите тождество:   = .

Прислать комментарий     Решение

Задача 61251

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тригонометрия (прочее) ]
Сложность: 5
Классы: 10,11

Пусть числа uk определены как и в предыдущей задаче. Докажите тождества:

а) 1 - u1 + u2 - u3 +...+ u2n = 2n(1 - cos x)(1 - cos 3x)...(1 - cos(2n - 1)x);

б) 1 - u12 + u22 - u32 +...+ u2n2 = (- 1)n$ {\dfrac{\sin(2n+2)x\cdot
\sin(2n+4)x\cdot\ldots \cdot\sin4nx}{\sin
2nx\cdot\sin2(n-1)x\cdot\ldots\cdot\sin 2x}}$.
Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .