Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 111923

Темы:   [ Производная и кратные корни ]
[ Производная и экстремумы ]
Сложность: 3
Классы: 10,11

Когда из бассейна сливают воду, уровень h воды в нём меняется в зависимости от времени t по закону

h(t)=at2+bt+c,

а в момент t0 окончания слива выполнены равенства h(t0)=h'(t0)=0 . За сколько часов вода из бассейна сливается полностью, если за первый час уровень воды в нём уменьшается вдвое?
Прислать комментарий     Решение

Задача 61019

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Для данного многочлена P(x) опишем способ, который позволяет построить многочлен R(x), который имеет те же корни, что и P(x), но все кратности 1. Положим  Q(x) = (P(x), P'(x))  и  R(x) = P(x)Q–1(x).  Докажите, что
  а) все корни многочлена P(x) будут корнями R(x);
  б) многочлен R(x) не имеет кратных корней.

Прислать комментарий     Решение

Задача 61020

Темы:   [ Производная и кратные корни ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 3+
Классы: 10,11

Постройте многочлен R(x) из задачи 61019, если:
  а)  P(x) = x6 – 6x4 – 4x3 + 9x2 + 12x + 4;
  б)  P(x) = x5 + x4 – 2x3 – 2x2 + x + 1.

Прислать комментарий     Решение

Задача 61025

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что при  n > 0  многочлен  nxn+1 – (n + 1)n  + 1  делится на  (x – 1)2.

Прислать комментарий     Решение

Задача 64410

Тема:   [ Производная и кратные корни ]
Сложность: 3+
Классы: 10,11

Докажите, что при  n > 0  многочлен  P(x) = n²xn+2 – (2n² + 2n – 1)xn+1 + (n + 1)²xn – x – 1  делится на  (x – 1)³.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .