Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 98]
В выпуклом четырёхугольнике ABCD стороны равны соответственно: AB = 10, BC = 14, CD = 11, AD = 5. Найдите угол между его диагоналями.
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.
|
|
Сложность: 3+ Классы: 9,10,11
|
Среди всех решений системы
x² + y² = 4,
z² + t² = 9,
xt + yz = 6
выберите те, для которых величина x + z принимает наибольшее значение.
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.
Докажите, что координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 98]