Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 258]
[Теорема Валена]
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что если Pn/Qn (n ≥ 1) – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств или Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что |α – p/q| < 1/2q2.
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что корни уравнения
а) (x – a)(x – b) + (x – b)(x – c) + (x – a)(x – c) = 0;
б) c(x – a)(x – b) + a(x – b)(x – c) + b(x – a)(x – c) = 0
всегда вещественные.
|
|
Сложность: 3+ Классы: 10,11
|
При каких значениях x и y верно равенство x² + (1 – y)² + (x – y)² = ⅓?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?
|
|
Сложность: 3+ Классы: 9,10,11
|
В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 258]