ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.

   Решение

Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 383]      



Задача 65124

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

Прислать комментарий     Решение

Задача 110023

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Свойства разверток ]
[ Куб ]
[ Степень вершины ]
Сложность: 4+
Классы: 8,9,10,11

Из 54 одинаковых единичных картонных квадратов сделали незамкнутую цепочку, соединив их шарнирно вершинами. Каждый квадрат (кроме крайних) соединён с соседями двумя противоположными вершинами. Можно ли этой цепочкой квадратов полностью закрыть поверхность куба 3×3×3?

Прислать комментарий     Решение

Задача 110068

Темы:   [ Геометрия на клетчатой бумаге ]
[ Шахматные доски и шахматные фигуры ]
[ Индукция в геометрии ]
[ Связность и разложение на связные компоненты ]
Сложность: 4+
Классы: 9,10,11

Автор: Певзнер И.

Множество клеток на клетчатой плоскости назовем ладейно связным, если из каждой его клетки можно попасть в любую другую, двигаясь по клеткам этого множества ходом ладьи (ладье разрешается перелетать через поля, не принадлежащие нашему множеству). Докажите, что ладейно связное множество из 100 клеток можно разбить на пары клеток, лежащих в одной строке или в одном столбце.

Прислать комментарий     Решение

Задача 109587

Темы:   [ Раскраски ]
[ Правило произведения ]
[ Задачи с ограничениями ]
[ Теория графов (прочее) ]
[ Процессы и операции ]
Сложность: 4+
Классы: 8,9,10

В городе Цветочном n площадей и m улиц  (mn + 1).  Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города.

Прислать комментарий     Решение

Задача 65677

Темы:   [ Турниры и турнирные таблицы ]
[ Вспомогательная раскраска (прочее) ]
[ Ориентированные графы ]
[ Деревья ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N.

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .