ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 110 111 112 113 114 115 116 >> [Всего задач: 1007]      



Задача 65548

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил n билетов на каждый маршрут. Иванов и Петров выехали из города A. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе B. Петров некоторое время ездил по купленным билетам, оказался в городе X и не может из него выехать, не купив новый билет. Докажите, что X – это либо A, либо B

Прислать комментарий     Решение

Задача 65550

Темы:   [ Деление с остатком ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Сколько существует разных способов разбить число 2004 на натуральные слагаемые, которые приблизительно равны? Слагаемых может быть одно или несколько. Числа называются приблизительно равными, если их разность не больше 1. Способы, отличающиеся только порядком слагаемых, считаются одинаковыми.

Прислать комментарий     Решение

Задача 65749

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10

В Национальной Баскетбольной Ассоциации 30 команд, каждая из которых проводит за год 82 матча с другими командами в регулярном чемпионате. Сможет ли руководство Ассоциации разделить команды (не обязательно поровну) на Восточную и Западную конференции и составить расписание игр так, чтобы матчи между командами из разных конференций составляли ровно половину от общего числа матчей?

Прислать комментарий     Решение

Задача 65841

Темы:   [ Остовы многогранных фигур ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 9,10,11

Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
  a) число вершин;
  б) число рёбер.

Прислать комментарий     Решение

Задача 66720

Темы:   [ Замощения костями домино и плитками ]
[ Комбинаторика (прочее) ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 8,9,10,11

Петя расставляет 500 королей на клетках доски 100×50 так, чтобы они не били друг друга. А Вася – 500 королей на белых клетках (в шахматной раскраске) доски 100×100 так, чтобы они не били друг друга. У кого больше способов это сделать?

Прислать комментарий     Решение

Страница: << 110 111 112 113 114 115 116 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .