ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 598]      



Задача 65860

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10

Взяли пять натуральных чисел и для каждых двух записали их сумму.
Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?

Прислать комментарий     Решение

Задача 65899

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8

Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.

Прислать комментарий     Решение

Задача 66077

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

Прислать комментарий     Решение

Задача 66099

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9

Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.

Прислать комментарий     Решение

Задача 67018

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

У каждого из девяти натуральных чисел $n, 2n, 3n,\ldots,9n$ выписали первую слева цифру. Может ли при некотором натуральном $n$ среди девяти выписанных цифр быть не более четырёх различных?
Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .