Страница:
<< 127 128 129 130
131 132 133 >> [Всего задач: 737]
|
|
Сложность: 5- Классы: 8,9,10
|
Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
а) 2100 ходов;
б) 2000 ходов?
|
|
Сложность: 5- Классы: 9,10,11
|
На доске выписаны в ряд n положительных чисел a1, a2, ..., an. Вася хочет выписать под каждым числом ai число bi ≥ ai так, чтобы для каждых двух из чисел b1, b2, ..., bn отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство b1b2...bn ≤ 2(n–1)/2a1a2...an.
|
|
Сложность: 5- Классы: 8,9,10
|
Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два
короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле
(если только оно свободно), соблюдая следующие правила: нельзя увеличивать
расстояние между королями (расстоянием между двумя полями называется наименьшее
число шагов короля, за которое он может пройти с одного поля на другое: так, в
начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто
поставит своего короля на противоположную кромку доски (белого короля на
вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?
|
|
Сложность: 5- Классы: 9,10,11
|
С числом разрешается проводить одно из двух действий: возводить
в квадрат или прибавлять единицу. Даны числа
19
и
98
. Можно
ли из них за одно и то же количество действий получить равные числа?
|
|
Сложность: 5- Классы: 8,9,10,11
|
Мишень "бегущий кабан" находится в одном из
n окошек, расположенных в ряд. Окошки закрыты
занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить
мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если
мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на
одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое
наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?
Страница:
<< 127 128 129 130
131 132 133 >> [Всего задач: 737]