Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 603]
Точки E, F – середины сторон BC, CD квадрата ABCD. Прямые AE и BF пересекаются в точке P. Докажите, что ∠PDA = ∠AED.
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике ABC ∠B = 2∠C. Точки P и Q на серединном перпендикуляре к стороне CB таковы, что ∠CAP = ∠PAQ = ∠QAB = ⅓ ∠A.
Докажите, что Q – центр описанной окружности треугольника CPB.
Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что AD = BC. Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что AH = AXA и H ≠ XA. Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.
Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 603]