Страница:
<< 16 17 18 19 20 21 22 >> [Всего задач: 165]
Победив Кащея, потребовал Иван золота, чтобы выкупить Василису у разбойников.
Привёл его Кащей в пещеру и сказал: "В сундуке лежат золотые слитки. Но просто так их унести нельзя: они заколдованы. Переложи себе в суму один или несколько. Потом я переложу из сумы в сундук один или несколько, но обязательно другое число. Так мы будем по очереди перекладывать их: ты в суму, я в сундук, каждый раз новое число. Когда новое перекладывание станет невозможным, сможешь унести свою суму со слитками". Какое наибольшее число слитков может унести Иван, как бы ни действовал Кащей, если в сундуке исходно лежит а) 13; б) 14 золотых слитков? Как ему это сделать?
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному.
За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Двое делят кусок сыра. Сначала первый режет сыр на два куска, потом второй – любой из кусков на два, и так далее, пока не получится пять кусков. Затем первый берёт себе один кусок, потом второй – один из оставшихся кусков, потом снова первый – и так, пока куски не закончатся. Для каждого игрока выяснить, какое наибольшее количество сыра он может себе гарантировать.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Дьявол предлагает Человеку сыграть в следующую игру. Сначала Человек платит некоторую сумму s и называет 97 троек {i, j, k}, где i, j, k – натуральные числа, не превосходящие 100. Затем Дьявол рисует выпуклый 100-угольник A1A2...A100 с площадью, равной 100, и выплачивает Человеку выигрыш, равный сумме площадей 97 треугольников AiAjAk. При каком наибольшем s Человеку выгодно согласиться?
|
|
Сложность: 4+ Классы: 10,11
|
На
n карточках написаны с разных сторон числа — на 1-й: 0 и 1;
на 2-й: 1 и 2; ...; на
n-й:
n - 1 и
n.
Один человек берёт из стопки несколько карточек и показывает второму одну
сторону каждой из них. Затем берёт из стопки еще одну карточку и тоже
показывает одну сторону.
Указать все случаи, в которых второй может определить число, написанное на
обороте последней показанной ему карточки.
Страница:
<< 16 17 18 19 20 21 22 >> [Всего задач: 165]