Страница:
<< 141 142 143 144
145 146 147 >> [Всего задач: 1308]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Директор зоопарка приобрёл восемь слонов с номерами 1, 2, ..., 8. Какие у них были массы, он забыл, но запомнил, что масса каждого слона, начиная с третьего, равнялась сумме масс двух предыдущих. Вдруг до директора дошёл слух, что один слон похудел. Как ему за два взвешивания на чашечных весах без гирь найти этого слона или убедиться, что это всего лишь слух? (Ему известно, что ни один слон не потолстел, а похудеть мог максимум один.)
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан бесконечный запас белых, синих и красных кубиков. По кругу расставляют любые $N$ из них. Робот, став в любое место круга, идёт по часовой стрелке и, пока не останется один кубик, постоянно повторяет такую операцию: уничтожает два ближайших кубика перед собой и ставит позади себя новый кубик того же цвета, если уничтоженные одинаковы, и третьего цвета, если уничтоженные двух разных цветов. Назовём расстановку кубиков хорошей, если цвет оставшегося в конце кубика не зависит от места, с которого стартовал робот. Назовём $N$ удачным, если при любом выборе $N$ кубиков все их расстановки хорошие. Найдите все удачные $N$.
|
|
Сложность: 4 Классы: 7,8,9,10
|
Для турнира изготовили 7 золотых, 7 серебряных и 7 бронзовых медалей. Все медали из одного металла должны весить одинаково, а из разных должны иметь различные массы. Но одна из всех медалей оказалась нестандартной – имела неправильную массу. При этом нестандартная золотая медаль может весить только меньше стандартной золотой, бронзовая – только больше стандартной бронзовой, а серебряная может отличаться по весу от стандартной серебряной в любую сторону. Можно ли за три взвешивания на чашечных весах без гирь найти нестандартную медаль?
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Казино предлагает игру по таким правилам. Игрок ставит любое целое
число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на
решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает
назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает
казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей
игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в
казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить
больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести
из казино после такой игры?
Страница:
<< 141 142 143 144
145 146 147 >> [Всего задач: 1308]