ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 246 247 248 249 250 251 252 >> [Всего задач: 1308]      



Задача 109639

Темы:   [ Математическая логика (прочее) ]
[ Деление с остатком ]
[ Кооперативные алгоритмы ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Кноп К.А.

  Переаттестация Совета Мудрецов происходит так: король выстраивает их в колонну по одному и надевает каждому колпак белого, синего или красного цветов. Все мудрецы видят цвета всех колпаков впереди стоящих мудрецов, а цвет своего и всех стоящих сзади не видят. Раз в минуту один из мудрецов должен выкрикнуть один из трёх цветов (каждый мудрец выкрикивает цвет один раз).
  После окончания этого процесса король казнит каждого мудреца, выкрикнувшего цвет, отличный от цвета его колпака.
  Накануне переаттестации все сто членов Совета Мудрецов договорились и придумали, как минимизировать число казненных. Скольким из них гарантированно удастся избежать казни?

Прислать комментарий     Решение

Задача 111332

Темы:   [ Процессы и операции ]
[ Уравнения в целых числах ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10

У игрока есть m золотых и n серебряных монет. В начале каждого раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких m и n крупье не сможет ему помешать?

Прислать комментарий     Решение

Задача 111808

Темы:   [ Средние величины ]
[ Принцип крайнего (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4+
Классы: 8,9,10

На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

Прислать комментарий     Решение

Задача 115415

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Трушин Б.

По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?

Прислать комментарий     Решение

Задача 73812

Темы:   [ Полуинварианты ]
[ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Графы (прочее) ]
Сложность: 4+
Классы: 7,8,9

Задано несколько красных и несколько синих точек. Некоторые из них соединены отрезками. Назовём точку «особой», если более половины из соединённых с ней точек имеют цвет, отличный от её цвета. Если есть хотя бы одна особая точка, то выбираем любую особую точку и перекрашиваем в другой цвет. Докажите, что через конечное число шагов не останется ни одной особой точки.
Прислать комментарий     Решение


Страница: << 246 247 248 249 250 251 252 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .