ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 245 246 247 248 249 250 251 >> [Всего задач: 1340]      



Задача 67491

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Дидин М.

Петя записал на доске натуральное число. Каждую минуту Вася умножает последнее записанное на доску число на 2 или на 3 и записывает результат на доске. Может ли Петя выбрать начальное число так, чтобы в любой момент среди всех записанных на доске чисел количество начинающихся на 1 или 2 было больше, чем количество начинающихся на 7, 8 или 9, как бы ни действовал Вася?
Прислать комментарий     Решение


Задача 78818

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Необычные конструкции ]
Сложность: 4-
Классы: 8,9,10

В городе "Многообразие" живут n жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более чем один житель может начать новую жизнь: перессориться со всеми своими друзьями и подружиться со всеми своими врагами. Доказать, что все жители могут подружиться.
Примечание. Если A — друг B, а B — друг C, то A — также друг C. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.
Прислать комментарий     Решение


Задача 111853

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 7,8,9

Фокусник Арутюн и его помощник Амаяк собираются показать следующий фокус. На доске нарисована окружность. Зрители отмечают на ней 2007 различных точек, затем помощник фокусника стирает одну из них. После этого фокусник впервые входит в комнату, смотрит на рисунок и отмечает полуокружность, на которой лежала стертая точка. Как фокуснику договориться с помощником, чтобы фокус гарантированно удался?
Прислать комментарий     Решение


Задача 32086

Темы:   [ Средние величины ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 6,7,8,9

Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: m, n и 0, причём m и n не имеют общих делителей и  m < n.  Докажите, что с помощью компьютера из них можно получить
  а) единицу;
  б) любое целое число от 1 до n.

Прислать комментарий     Решение

Задача 65322

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Математическая логика (прочее) ]
Сложность: 4-
Классы: 9,10,11

  У короля Артура два одинаково мудрых советника — Мерлин и Персифаль. Каждый из них находит верный ответ на любой вопрос с вероятностью p или неверный ответ – с вероятностью  q = 1 – p.
  Если оба советника говорят одно и то же, король слушается их. Если они говорят противоположное, то король выбирает решение, подбрасывая монету.
  Однажды Артур задумался – зачем ему два советника, не хватит ли одного? Тогда король позвал советников и сказал:
  – Мне кажется, что вероятность принятия верных решений не уменьшится, если оставлю одного советника и буду его слушаться. Если это так, я должен уволить одного из вас. Если это не так, я оставлю все, как есть. Ответьте мне, должен ли я уволить одного из вас?
  – Кого именно ты собираешься уволить, король Артур? – спросили советники.
  – Если я приму решение уволить одного из вас, то сделаю выбор с помощью жребия, бросив монету.
  Советники ушли думать над ответом. Советники, повторим, одинаково мудрые, но не одинаково честные. Персифаль очень честен и постарается дать верный ответ, даже если ему грозит увольнение. А Мерлин, честный во всем прочем, в этой ситуации решает дать такой ответ, чтобы вероятность его увольнения была как можно меньше. Какова вероятность того, что Мерлин будет уволен?

Прислать комментарий     Решение

Страница: << 245 246 247 248 249 250 251 >> [Всего задач: 1340]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .