ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий. Является ли чётным число всех 64-значных натуральных чисел, не содержащих в записи нулей и делящихся на 101?
Две прямые, проходящие через точку C, касаются окружности в точках A и B. Может ли прямая, проходящая через середины отрезков AC и BC, касаться этой окружности?
Правильный треугольник ABC со стороной, равной 3, вписан
в окружность. Точка D лежит на окружности, причём хорда
AD равна
На шахматной доске 8×8 стоит кубик (нижняя грань совпадает с одной из клеток доски). Его прокатили по доске, перекатывая через рёбра, так, что кубик побывал на всех клетках (на некоторых, возможно, несколько раз). Могло ли случиться, что одна из его граней ни разу не лежала на доске? |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 9759]
Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?
В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
Из произвольной точки круглого бильярдного стола пущен шар. Докажите, что внутри стола найдётся такая окружность, что траектория шара её ни разу не пересечёт.
Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?
Радиусы двух концентрических окружностей относятся как 7:4, а ширина кольца равна 12. Найдите радиус меньшей окружности.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 9759]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке