ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде

Биномиальный коэффициент      интерпретируется как многочлен от переменной x. В частности, нижний индекс у биномиального коэффициента может быть любым действительным числом.

б) Докажите, что коэффициенты  d0, d1, ..., dn  в этом представлении вычисляются по формуле  dk = Δkf(0)  (0 ≤ k ≤ n).

Вниз   Решение


Разложить на множители выражение $x^3 + y^3 + z^3 - 3 x y z$.

ВверхВниз   Решение


На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки.

ВверхВниз   Решение


а) Покажите, что среди любых шести целых чисел найдутся два, разность которых кратна 5.
б) Останется ли это утверждение верным, если вместо разности взять сумму?

ВверхВниз   Решение


Найдите ГМТ X, из которых можно провести касательные к данной дуге AB окружности.

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер BA , BB1 , BC и плоскости A1DC1 ; б) рёбер BA , BB1 , BC и прямой DA1 .

ВверхВниз   Решение


Поле с цветами разбито тропинками на равные квадраты. Садовники живут в вершинах всех квадратов. За каждым цветком ухаживают три ближайших садовника. Нарисуйте все цветы, за которыми ухаживает один из садовников.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 87296

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Высота пирамиды равна 5, а основанием служит треугольник со сторонами 7, 8 и 9. Некоторая сфера касается плоскостей всех боковых граней пирамиды в точках, лежащих на сторонах основания. Найдите радиус сферы.
Прислать комментарий     Решение


Задача 87297

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Сфера радиуса касается плоскостей всех боковых граней некоторой пирамиды в точках, лежащих на сторонах основания. Найдите высоту пирамиды, если её основанием служит треугольник со сторонами 5, 6 и 9.
Прислать комментарий     Решение


Задача 87072

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 8,9

Дана правильная четырёхугольная пирамида PABCD ( P – вершина) со стороной основания a и боковым ребром a . Сфера с центром в точке O проходит через точку A и касается рёбер PB и PD в их серединах. Найдите объём пирамиды OPCD .
Прислать комментарий     Решение


Задача 87132

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

Сфера радиуса r касается всех рёбер треугольной пирамиды. Центр этой сферы лежит на высоте пирамиды. Докажите, что пирамида правильная и найдите её высоту, если известно, что центр сферы удален от вершины пирамиды на расстояние r .
Прислать комментарий     Решение


Задача 87137

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В трёхгранный угол, все плоские углы которого равны α , помещена сфера так, что она касается всех рёбер трёхгранного угла. Грани трёхгранного угла пересекают сферу по окружностям радиуса r . Найдите радиус сферы.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .