|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде б) Докажите, что коэффициенты d0, d1, ..., dn в этом представлении вычисляются по формуле dk = Δkf(0) (0 ≤ k ≤ n). Разложить на множители выражение $x^3 + y^3 + z^3 - 3 x y z$. На шахматной доске более четверти полей занято шахматными фигурами. Докажите, что занятыми оказались хотя бы две соседние (по стороне или диагонали) клетки. а) Покажите, что среди любых шести целых чисел найдутся два, разность которых
кратна 5. Найдите ГМТ X, из которых можно провести касательные к данной дуге AB окружности. Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер BA , BB1 , BC и плоскости A1DC1 ; б) рёбер BA , BB1 , BC и прямой DA1 . Поле с цветами разбито тропинками на равные квадраты. Садовники живут в вершинах всех квадратов. За каждым цветком ухаживают три ближайших садовника. Нарисуйте все цветы, за которыми ухаживает один из садовников. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 33] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|