ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Как действуют отображения Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1282]
Прямая, проходящая через вершину C равнобедренного
треугольника ABC, пересекает основание AB в точке M,
а описанную окружность в точке N. Докажите, что
CM . CN = AC2
и
CM/CN = AM . BM/(AN . BN).
Дан параллелограмм ABCD с острым углом при
вершине A. На лучах AB и CB отмечены точки H и K
соответственно так, что CH = BC и AK = AB. Докажите, что:
а) Стороны угла с вершиной C касаются окружности
в точках A и B. Из точки P, лежащей на окружности,
опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA
и AB. Докажите, что
PC12 = PA1 . PB1 и
PA1 : PB1 = PB2 : PA2.
Известно, что в некотором треугольнике медиана,
биссектриса и высота, проведенные из вершины C, делят угол
на четыре равные части. Найдите углы этого треугольника.
Докажите, что в любом треугольнике ABC
биссектриса AE лежит между медианой AM и высотой AH.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке