Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 102]
Найти остаток от деления на 7 числа 1010 + 10102 + 10103 + ... + 101010.
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую
длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.
Последовательность натуральных чисел {xn} строится по следующему правилу: x1 = 2, ..., xn = [1,5xn–1].
Доказать, что последовательность yn = (–1)xn непериодическая.
|
|
Сложность: 3+ Классы: 8,9,10
|
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
а) Докажите, что если a1 рационально, то
последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого
места, периодическая, то a1 рационально.
Докажите, что число
а) 9797,
б) 199717
нельзя представить в виде суммы кубов нескольких идущих подряд натуральных чисел.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 102]