|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны окружность O, точка A, лежащая на ней, перпендикуляр к плоскости окружности O, восставленный из точки A, и точка B, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки A на прямые, проходящие через точку B и произвольную точку окружности O. В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых. На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.) Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?
Прямая, проходящая через точку пересечения медиан треугольника ABC, пересекает стороны BA и BC в точках A' и C' соответственно. При этом |
Страница: 1 2 3 4 >> [Всего задач: 16]
Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство AB·CD + AC·BD > AD·BC.
Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты.
Страница: 1 2 3 4 >> [Всего задач: 16] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|