ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Даны окружность O, точка A, лежащая на ней, перпендикуляр к плоскости окружности O, восставленный из точки A, и точка B, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки A на прямые, проходящие через точку B и произвольную точку окружности O.

Вниз   Решение


В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

ВверхВниз   Решение


На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

ВверхВниз   Решение


Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

ВверхВниз   Решение


Прямая, проходящая через точку пересечения медиан треугольника ABC, пересекает стороны BA и BC в точках A' и C' соответственно. При этом
BA' < BA = 3,  BC = 2,  BA'·BC' = 3.  Найдите BA'.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 87102

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб с ребром 1. Докажите, что сумма расстояний от произвольной точки до его вершин не меньше 4 .
Прислать комментарий     Решение


Задача 87103

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Параллелепипеды ]
Сложность: 3
Классы: 8,9

Пусть a , b и c – стороны параллелепипеда, d – одна из его диагоналей. Докажите, что a2 + b2 + c2 d2 .
Прислать комментарий     Решение


Задача 87105

Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

В пространстве рассматриваются два отрезка AB и CD , не лежащие в одной плоскости. Пусть M и K – их середины. Докажите, что MK < (AD + BC) .
Прислать комментарий     Решение


Задача 64319

 [Неравенство Птолемея]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Теорема Птолемея ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство  AB·CD + AC·BD > AD·BC.

Прислать комментарий     Решение

Задача 98420

 [Багаж в Московском метрополитене]
Темы:   [ Длины и периметры (геометрические неравенства) ]
[ Прямоугольные параллелепипеды ]
[ Проектирование помогает решить задачу ]
[ Боковая поверхность параллелепипеда ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 10,11

Автор: Шень А.Х.

Будем называть "размером" прямоугольного параллелепипеда сумму трёх его измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .