ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что KQ ⊥ PR, PL ⊥ KM, LR ⊥ PQ, QM ⊥ KL. Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O. Решение |
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 401]
На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что KQ ⊥ PR, PL ⊥ KM, LR ⊥ PQ, QM ⊥ KL. Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.
Через точку A общей хорды BC пересекающихся окружностей проведена прямая, пересекающая окружности в таких точках D и E соответственно, что прямая BD касается одной окружности, а прямая BE – другой. Продолжение хорды CD одной окружности пересекает другую окружность в точке F.
В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону BС – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.
Вписанная окружность треугольника ABC касается сторон BC, CA, ABв точках A', B', C' соответственно. Прямые AA', BB' и CC' пересекаются в точке G. Описанная окружность треугольника GA'B', вторично пересекает прямые AC и BC в точках CA и CB. Аналогично определяются точки AB, AC, BC, BA. Докажите, что точки AB, AC, BC, BA, CA, CB лежат на одной окружности.
Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|