ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC известно, что AB = 14, BC = 6, AC = 10. Биссектрисы BD и CE пересекаются в точке O. Найдите OD.

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 448]      



Задача 102340

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC даны длины сторон AB = 4, BC = 6 и биссектриса BD = 3$ \sqrt{2}$. Найдите длину медианы CE.
Прислать комментарий     Решение


Задача 102367

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 14, BC = 6, AC = 10. Биссектрисы BD и CE пересекаются в точке O. Найдите OD.
Прислать комментарий     Решение


Задача 102397

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены медианы AN и CM, $ \angle$ABC = 120o. Окружность, проходящая через точки A, M и N, проходит также через точку C. Радиус этой окружности равен 7. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 102398

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольнике KLM точки A и B— середины сторон KL и LM, $ \angle$LKM = 30o. Площадь треугольника ALB равна 7$ \sqrt{3}$. Точка K лежит на окружности, проходящей через точки A, B и M. Найдите радиус этой окружности.

Прислать комментарий     Решение


Задача 34983

Темы:   [ Четырехугольник (неравенства) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10,11

Длина каждой из диагоналей выпуклого четырехугольника больше 2. Докажите, что в этом четырехугольнике хотя бы одна сторона имеет длину, большую 21/2.
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .