ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диаметр MN и хорда PQ окружности пересекаются в точке R, причём MN перпендикулярен к PQ. Касательные к окружности в точках N и P пересекаются в точке L. Отрезки ML и PR пересекаются в точке S. Найдите диаметр окружности, если площадь треугольника PLS равна 2 и  MR = 1.

   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 512]      



Задача 102427

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AB, если  AC = 16,  AD = 21,  AE = 24.

Прислать комментарий     Решение

Задача 102428

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, лежащих по разные стороны от прямой AB. Касательные к этим окружностям в точках C и D пересекаются в точке E. Найдите AD, если  AB = 15,  AC = 20,  AE = 24.

Прислать комментарий     Решение

Задача 102477

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4-
Классы: 8,9

Диаметр AB и хорда CD окружности пересекаются в точке E, причём  CE = DE.  Касательные к окружности в точках B и C пересекаются в точке K. Отрезки AK и CE пересекаются в точке M. Найдите площадь треугольника CKM, если  AB = 10,  AE = 1.

Прислать комментарий     Решение

Задача 102478

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4-
Классы: 8,9

Диаметр MN и хорда PQ окружности пересекаются в точке R, причём MN перпендикулярен к PQ. Касательные к окружности в точках N и P пересекаются в точке L. Отрезки ML и PR пересекаются в точке S. Найдите диаметр окружности, если площадь треугольника PLS равна 2 и  MR = 1.

Прислать комментарий     Решение

Задача 102497

Темы:   [ Теорема синусов ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

На сторонах острого угла с вершиной O взяты точки A и B. На луче OB взята точка M на расстоянии 3OA от прямой OA, а на луче OA – точка N на расстоянии 3OB от прямой OB. Радиус описанной окружности треугольника AOB равен 3. Найдите MN.

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .