ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вокруг треугольника MKH описана окружность радиуса r с центром в точке O. Длина стороны HM равна a. Для сторон треугольника выполнено соотношение HK2 - HM2 = HM2 - MK2. Найдите площадь треугольника OLK, где L — точка пересечения медиан треугольника MKH. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]
Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы x и y, что для любой точки Ai выполняется равенство где k и l – некоторые целые числа.
Вокруг треугольника MKH описана окружность радиуса r с центром в точке O. Длина стороны HM равна a. Для сторон треугольника выполнено соотношение HK2 - HM2 = HM2 - MK2. Найдите площадь треугольника OLK, где L — точка пересечения медиан треугольника MKH.
В треугольнике ABC выполнено соотношение между сторонами = . Найдите радиус описанной окружности, если расстояние от ее центра до точки пересечения медиан равно d, а длина стороны AB равна c.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|