ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно а) начала координат; б) точки K(a;b).

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 563]      



Задача 67117

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
Сложность: 3
Классы: 8,9,10,11

Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$.
Прислать комментарий     Решение


Задача 102709

Темы:   [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3
Классы: 8,9

Дана точка M(x;y). Найдите координаты точки, симметричной точке M относительно а) начала координат; б) точки K(a;b).

Прислать комментарий     Решение


Задача 102711

Темы:   [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3
Классы: 8,9

Дана точка M(- 1;3). Найдите координаты точки, симметричной точке M относительно а) оси Ox; б) оси Oy; в) начала координат; г) точки K(3;1); д) биссектрисы I и III координатных углов; е) биссектрисы II и IV координатных углов.

Прислать комментарий     Решение


Задача 32076

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9,10

a, b, c, d – стороны четырёхугольника (в любом порядке), S – его площадь. Докажите, что  S ≤ ½ (ab + cd).

Прислать комментарий     Решение

Задача 53078

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B прямой, величина угла A равна α  (α < 45°),  точка D – середина гипотенузы. Точка C1 симметрична точке C относительно прямой BD. Найдите угол AC1B.

Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .