ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 563]      



Задача 64826

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Осевая и скользящая симметрии (прочее) ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Точка D – середина гипотенузы АВ прямоугольного треугольника ABC,  ∠ВАС = 35°.  Точка B1 симметрична точке B относительно прямой СD.
Найдите угол AB1C.

Прислать комментарий     Решение

Задача 64905

Темы:   [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что  ∠YB1Z = ∠XB1Z.

Прислать комментарий     Решение

Задача 64906

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. M – середина стороны BC, а P – проекция вершины B на серединный перпендикуляр к AC. Прямая PM пересекает сторону AB в точке Q. Докажите, что треугольник QPB равнобедренный.

Прислать комментарий     Решение

Задача 65921

Темы:   [ Периодичность и непериодичность ]
[ Композиции симметрий ]
Сложность: 3+
Классы: 10,11

Функция  f(x) определена для всех действительных чисел, причем для любого x выполняются равенства  f(x + 2) = f(2 – x)  и  f(x + 7) = f(7 – x).
Докажите, что  f(x) – периодическая функция.

Прислать комментарий     Решение

Задача 66100

Темы:   [ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Докажите, что на графике любого квадратного трёхчлена со старшим коэффициентом 1, имеющего ровно один корень, найдётся такая точка  (p, q),  что трёхчлен  x² + px + q  также имеет ровно один корень.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .