ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 302]      



Задача 98000

Темы:   [ Развертка помогает решить задачу ]
[ Обход графов ]
[ Наглядная геометрия в пространстве ]
[ Куб ]
Сложность: 3-
Классы: 8,9,10

Автор: Фомин С.В.

Можно ли нарисовать на поверхности кубика Рубика такой замкнутый путь, который проходит через каждый квадратик ровно один раз (через вершины квадратиков путь не проходит)?

Прислать комментарий     Решение

Задача 103736

Темы:   [ Шахматная раскраска ]
[ Замощения костями домино и плитками ]
[ Прямоугольные параллелепипеды ]
[ Куб ]
Сложность: 3-
Классы: 7

Автор: Ботин Д.А.

Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?

Прислать комментарий     Решение


Задача 116526

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Касающиеся сферы ]
[ Касательные к сферам ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 10,11

В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AD < AB < AA1. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

Прислать комментарий     Решение

Задача 98074

Темы:   [ Наглядная геометрия в пространстве ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
[ Прямоугольные параллелепипеды ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Фомин С.В.

В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?

Прислать комментарий     Решение

Задача 109627

Темы:   [ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
[ Подсчет двумя способами ]
[ Куб ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 8,9,10

В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .