ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните. Решение |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 694]
а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и an ≤ n10 при любом n? б) Тот же вопрос, если an ≤ n при любом n.
xn + 1 = , yn + 1 = , zn + 1 = , (n 1).
а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен. б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0?
Найдите остаток от деления 2100 на 3.
Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т.д. Какой палец будет по счёту 1992-м?
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|