ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ботин Д.А.

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 694]      



Задача 79370

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 5+
Классы: 9,10,11

а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и  an ≤ n10  при любом n?

б) Тот же вопрос, если  an ≤ n  при любом n.
Прислать комментарий     Решение


Задача 61339

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Тригонометрические замены ]
Сложность: 5+
Классы: 10,11

Тройки чисел (xn, yn, zn) (n $ \geqslant$ 1) строятся по правилу: x1 = 2, y1 = 4, z1 = 6/7,

xn + 1 = $\displaystyle {\frac{2x_n}{x_n^2-1}}$,    yn + 1 = $\displaystyle {\frac{2y_n}{y_n^2-1}}$,    zn + 1 = $\displaystyle {\frac{2z_n}{z_n^2-1}}$,    (n $\displaystyle \geqslant$ 1).


а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен.
б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0?
Прислать комментарий     Решение

Задача 103775

Темы:   [ Индукция (прочее) ]
[ Последовательности (прочее) ]
Сложность: 2-
Классы: 6,7

Автор: Ботин Д.А.

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

Прислать комментарий     Решение


Задача 30388

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2
Классы: 7,8

Найдите остаток от деления 2100 на 3.

Прислать комментарий     Решение

Задача 88004

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Периодичность и непериодичность ]
[ Деление с остатком ]
Сложность: 2
Классы: 5,6,7

Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т.д. Какой палец будет по счёту 1992-м?

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .