ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 694]
Предположим, что цепные дроби сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена x² – px + q = 0. С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328): xn+1 = xn – = . Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.
a1 = 1, an + 1 = an + (n 0).
Докажите, что
а) эта последовательность неограничена; б) a9000 > 30; в) найдите предел .
Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если
Существует ли такая бесконечная возрастающая последовательность a1, a2, a3, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|