Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На полке стоит 12 книг. Сколькими способами можно выбрать из них пять книг, никакие две из которых не стоят рядом?

Вниз   Решение


Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

ВверхВниз   Решение


Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 598]      



Задача 97894

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фомин С.В.

Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?

Прислать комментарий     Решение

Задача 98084

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

Прислать комментарий     Решение

Задача 102840

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999.

Прислать комментарий     Решение

Задача 102843

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 6,7

Существуют ли такие двузначные числа  abcd,  что  ab·cd = abcd.

Прислать комментарий     Решение

Задача 103794

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .