|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов? В книге рекордов Гиннесса написано, что наибольшее известное простое число равно 23021377 – 1. Не опечатка ли это? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 201]
Докажите, что любое простое число, большее 3, можно записать в одном из двух видов: 6n + 1 либо 6n – 1, где n – натуральное число.
Найти все такие натуральные числа p, что p и 5p + 1 – простые.
Найти все такие натуральные числа p, что p и 3p² + 1 – простые.
Известно, что p > 3 и p – простое число.
В книге рекордов Гиннесса написано, что наибольшее известное простое число равно 23021377 – 1. Не опечатка ли это?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 201] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|