ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1. На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки? Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам? Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что
sin X =
(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
На одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$. Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая. Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел. С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением
z(
Пусть
Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]
В 10-этажном доме на первом этаже живет 1 человек, на втором — 2, на третьем — 3, на четвертом — 4, ... на десятом — 10. На каком этаже лифт останавливается чаще всего?
В книжном шкафу стоят по порядку четыре тома собрания сочинений Астрид Линдгрен, по 200 страниц в каждом томе. Червячок, живущий в этом собрании прогрыз путь от первой страницы первого тома до последней страницы четвертого тома. Сколько страниц прогрыз червячок?
Домашнее задание. Прорежьте в тетрадном листе дырку такого размера, чтобы Вы сами могли в нее пролезть.
Имеются два кошелька и одна монета. Внутри первого кошелька одна монета, и внутри второго кошелька одна монета. Как такое может быть?
Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 40]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке