Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

В клетках таблицы 5×5 стоят ненулевые цифры. В каждой строке и в каждом столбце из всех стоящих там цифр составлены десять пятизначных чисел. Может ли оказаться, что из всех этих чисел ровно одно не делится на 3?

Вниз   Решение


В парке растет 10000 деревьев, посаженных квадратно-гнездовым способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев можно срубить, чтобы выполнялось следующее условие: если встать на любой пень, то не будет видно ни одного другого пня? (Деревья можно считать достаточно тонкими.)

ВверхВниз   Решение


Даны окружность, две точки P и Q этой окружности и прямая. Найдите на окружности такую точку M, чтобы прямые MP и MQ отсекали на данной прямой отрезок AB данной величины.

ВверхВниз   Решение


Даны пять чисел; сумма любых трёх из них чётна. Доказать, что все числа чётны.

ВверхВниз   Решение


В клетках таблицы 3×3 расставили цифры от 1 до 9. Затем нашли суммы цифр в каждой строке.
Какое наибольшее количество из этих сумм может оказаться полным квадратом?

ВверхВниз   Решение


На доске записано несколько последовательных натуральных чисел. Ровно 52% из них – чётные. Сколько чётных чисел записано на доске?

ВверхВниз   Решение


В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?

ВверхВниз   Решение


В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит $ \sqrt{5}$.

ВверхВниз   Решение


Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

ВверхВниз   Решение


Из произвольной точки M внутри острого угла с вершиной A опущены перпендикуляры MP и MQ на его стороны. Из вершины A проведён перпендикуляр AK на PQ. Докажите, что $ \angle$PAK = $ \angle$MAQ.

ВверхВниз   Решение


Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.

ВверхВниз   Решение


Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты $100\times100$ и $1\times1$?

ВверхВниз   Решение


Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.

ВверхВниз   Решение


Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

ВверхВниз   Решение


Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

ВверхВниз   Решение


Из шахматной доски $8\times8$ вырезали 10 клеток. Известно, что среди вырезанных клеток есть как черные, так и белые. Какое наибольшее количество двухклеточных прямоугольников можно после этого гарантированно вырезать из этой доски?

ВверхВниз   Решение


Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1?

ВверхВниз   Решение


Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше основание, тем меньше проведённая к нему высота.

ВверхВниз   Решение


К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)

ВверхВниз   Решение


В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Восстановите пример.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 229]      



Задача 104038

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 7,8,9

Как расставить числа 5/177, 51/19, 95/9 и знаки арифметических операций "+", "-", "*" и "/" между ними так, чтобы полученное число равнялось 2006?
Прислать комментарий     Решение


Задача 104057

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Доктор Айболит раздал четырём заболевшим зверям 2006 чудодейственных таблеток. Носорог получил на одну больше, чем крокодил, бегемот на одну больше, чем носорог, а слон — на одну больше, чем бегемот. Сколько таблеток придётся съесть слону?
Прислать комментарий     Решение


Задача 104059

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 2
Классы: 6,7,8

Саша пригласил Петю в гости, сказав, что живёт в 10-м подъезде в квартире №333, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом девятиэтажный. На какой этаж ему следует подняться? (На каждом этаже число квартир одинаково, номера квартир в доме начинаются с единицы.)

Прислать комментарий     Решение

Задача 104063

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Обыкновенные дроби ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 6,7,8

Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?

Прислать комментарий     Решение

Задача 104069

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Восстановите пример.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 229]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .