ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ребро правильного тетраэдра ABCD равно a . На ребре BD расположена точка M так, что 3DM=a . Прямой круговой конус расположен так, что его вершина находится на середине ребра AC , а окружность основания проходит через точку M и пересекает рёбра AB и BC . Найдите радиус основания этого конуса. Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке. Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2
Внутри правильного тетраэдра ABCD расположены два шара радиусов 2R и 3R , касающиеся друг друга внешним образом, причём один шар вписан в трёхгранный угол тетраэдра с вершиной в точке A , а другой – в трёхгранный угол с вершиной в точке B . Найдите длину ребра этого тетраэдра. Внутри правильного тетраэдра с ребром a лежат четыре равных шара так, что каждый шар касается трёх других шаров и трёх граней тетраэдра. Найдите радиусы этих шаров.
Последовательность a1,a2,.. такова, что a1
В правильном тетраэдре ABCD плоскость P пересекает рёбра AB ,
BC , CD , AD в точках K , L , M , N соответственно. Площади
треугольников AKN , KBL , NDM составляют соответственно Ребро правильного тетраэдра ABCD равно a . На ребре AB как на диаметре построена сфера. Найдите радиус шара, вписанного в трёхгранный угол тетраэдра с вершиной в точке A и касающегося построенной сферы. В остроугольном треугольнике ABC проведены высоты AE и CD. Различные точки F и G на стороне AC таковы, что DF || BC и EG || AB. Докажите, что точки D, E, F и G лежат на одной окружности. Через каждую грань куба провели плоскость. На сколько частей разделят пространство данные плоскости? В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 79]
В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.
В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.
В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
Оля и Максим оплатили путешествие по архипелагу из 2009 островов, где некоторые острова связаны двусторонними маршрутами катера. Они путешествуют, играя. Сначала Оля выбирает остров, на который они прилетают. Затем они путешествуют вместе на катерах, по очереди выбирая остров, на котором еще не были (первый раз выбирает Максим). Кто не сможет выбрать остров, проиграл. Докажите, что Оля может выиграть.
В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 79]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке