ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Функция f такова, что для любых положительных x и y выполняется равенство f(xy) = f(x) + f(y) . Найдите f(2007) , если f() = 1 . Решение Для положительных чисел x, y, z выполнено равенство x²/y + y²/z + z²/x = x²/z + y²/x + z²/y. Докажите, что хотя бы два из чисел x, y, z равны между собой. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]
На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
Известно, что выражения 4k + 5 и 9k + 4 при некоторых натуральных значениях k одновременно являются точными квадратами. Какие значения может принимать выражение 7k + 4 при тех же значениях k?
Докажите, что если три числа a, b, c связаны соотношением 1/a + 1/b + 1/c = 1/a+b+c, то какие-либо два из этих чисел в сумме дают 0.
Для положительных чисел x, y, z выполнено равенство x²/y + y²/z + z²/x = x²/z + y²/x + z²/y. Докажите, что хотя бы два из чисел x, y, z равны между собой.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|